home *** CD-ROM | disk | FTP | other *** search
- SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
- $ LDVR, WORK, LWORK, INFO )
- *
- * -- LAPACK driver routine (version 2.0) --
- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- * Courant Institute, Argonne National Lab, and Rice University
- * September 30, 1994
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVL, JOBVR
- INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
- $ WI( * ), WORK( * ), WR( * )
- * ..
- *
- * Purpose
- * =======
- *
- * DGEEV computes for an N-by-N real nonsymmetric matrix A, the
- * eigenvalues and, optionally, the left and/or right eigenvectors.
- *
- * The right eigenvector v(j) of A satisfies
- * A * v(j) = lambda(j) * v(j)
- * where lambda(j) is its eigenvalue.
- * The left eigenvector u(j) of A satisfies
- * u(j)**H * A = lambda(j) * u(j)**H
- * where u(j)**H denotes the conjugate transpose of u(j).
- *
- * The computed eigenvectors are normalized to have Euclidean norm
- * equal to 1 and largest component real.
- *
- * Arguments
- * =========
- *
- * JOBVL (input) CHARACTER*1
- * = 'N': left eigenvectors of A are not computed;
- * = 'V': left eigenvectors of A are computed.
- *
- * JOBVR (input) CHARACTER*1
- * = 'N': right eigenvectors of A are not computed;
- * = 'V': right eigenvectors of A are computed.
- *
- * N (input) INTEGER
- * The order of the matrix A. N >= 0.
- *
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- * On entry, the N-by-N matrix A.
- * On exit, A has been overwritten.
- *
- * LDA (input) INTEGER
- * The leading dimension of the array A. LDA >= max(1,N).
- *
- * WR (output) DOUBLE PRECISION array, dimension (N)
- * WI (output) DOUBLE PRECISION array, dimension (N)
- * WR and WI contain the real and imaginary parts,
- * respectively, of the computed eigenvalues. Complex
- * conjugate pairs of eigenvalues appear consecutively
- * with the eigenvalue having the positive imaginary part
- * first.
- *
- * VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
- * If JOBVL = 'V', the left eigenvectors u(j) are stored one
- * after another in the columns of VL, in the same order
- * as their eigenvalues.
- * If JOBVL = 'N', VL is not referenced.
- * If the j-th eigenvalue is real, then u(j) = VL(:,j),
- * the j-th column of VL.
- * If the j-th and (j+1)-st eigenvalues form a complex
- * conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
- * u(j+1) = VL(:,j) - i*VL(:,j+1).
- *
- * LDVL (input) INTEGER
- * The leading dimension of the array VL. LDVL >= 1; if
- * JOBVL = 'V', LDVL >= N.
- *
- * VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
- * If JOBVR = 'V', the right eigenvectors v(j) are stored one
- * after another in the columns of VR, in the same order
- * as their eigenvalues.
- * If JOBVR = 'N', VR is not referenced.
- * If the j-th eigenvalue is real, then v(j) = VR(:,j),
- * the j-th column of VR.
- * If the j-th and (j+1)-st eigenvalues form a complex
- * conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
- * v(j+1) = VR(:,j) - i*VR(:,j+1).
- *
- * LDVR (input) INTEGER
- * The leading dimension of the array VR. LDVR >= 1; if
- * JOBVR = 'V', LDVR >= N.
- *
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *
- * LWORK (input) INTEGER
- * The dimension of the array WORK. LWORK >= max(1,3*N), and
- * if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
- * performance, LWORK must generally be larger.
- *
- * INFO (output) INTEGER
- * = 0: successful exit
- * < 0: if INFO = -i, the i-th argument had an illegal value.
- * > 0: if INFO = i, the QR algorithm failed to compute all the
- * eigenvalues, and no eigenvectors have been computed;
- * elements i+1:N of WR and WI contain eigenvalues which
- * have converged.
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- LOGICAL SCALEA, WANTVL, WANTVR
- CHARACTER SIDE
- INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
- $ MAXB, MAXWRK, MINWRK, NOUT
- DOUBLE PRECISION ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
- $ SN
- * ..
- * .. Local Arrays ..
- LOGICAL SELECT( 1 )
- DOUBLE PRECISION DUM( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
- $ DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC,
- $ XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IDAMAX, ILAENV
- DOUBLE PRECISION DLAMCH, DLANGE, DLAPY2, DNRM2
- EXTERNAL LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
- $ DNRM2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- WANTVL = LSAME( JOBVL, 'V' )
- WANTVR = LSAME( JOBVR, 'V' )
- IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
- INFO = -9
- ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
- INFO = -11
- END IF
- *
- * Compute workspace
- * (Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of workspace needed at that point in the code,
- * as well as the preferred amount for good performance.
- * NB refers to the optimal block size for the immediately
- * following subroutine, as returned by ILAENV.
- * HSWORK refers to the workspace preferred by DHSEQR, as
- * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
- * the worst case.)
- *
- MINWRK = 1
- IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
- MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
- IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
- MINWRK = MAX( 1, 3*N )
- MAXB = MAX( ILAENV( 8, 'DHSEQR', 'EN', N, 1, N, -1 ), 2 )
- K = MIN( MAXB, N, MAX( 2, ILAENV( 4, 'DHSEQR', 'EN', N, 1,
- $ N, -1 ) ) )
- HSWORK = MAX( K*( K+2 ), 2*N )
- MAXWRK = MAX( MAXWRK, N+1, N+HSWORK )
- ELSE
- MINWRK = MAX( 1, 4*N )
- MAXWRK = MAX( MAXWRK, 2*N+( N-1 )*
- $ ILAENV( 1, 'DORGHR', ' ', N, 1, N, -1 ) )
- MAXB = MAX( ILAENV( 8, 'DHSEQR', 'SV', N, 1, N, -1 ), 2 )
- K = MIN( MAXB, N, MAX( 2, ILAENV( 4, 'DHSEQR', 'SV', N, 1,
- $ N, -1 ) ) )
- HSWORK = MAX( K*( K+2 ), 2*N )
- MAXWRK = MAX( MAXWRK, N+1, N+HSWORK )
- MAXWRK = MAX( MAXWRK, 4*N )
- END IF
- WORK( 1 ) = MAXWRK
- END IF
- IF( LWORK.LT.MINWRK ) THEN
- INFO = -13
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGEEV ', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Get machine constants
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- SMLNUM = SQRT( SMLNUM ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
- SCALEA = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = SMLNUM
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = BIGNUM
- END IF
- IF( SCALEA )
- $ CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
- *
- * Balance the matrix
- * (Workspace: need N)
- *
- IBAL = 1
- CALL DGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
- *
- * Reduce to upper Hessenberg form
- * (Workspace: need 3*N, prefer 2*N+N*NB)
- *
- ITAU = IBAL + N
- IWRK = ITAU + N
- CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- *
- IF( WANTVL ) THEN
- *
- * Want left eigenvectors
- * Copy Householder vectors to VL
- *
- SIDE = 'L'
- CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
- *
- * Generate orthogonal matrix in VL
- * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- *
- CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- *
- * Perform QR iteration, accumulating Schur vectors in VL
- * (Workspace: need N+1, prefer N+HSWORK (see comments) )
- *
- IWRK = ITAU
- CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
- $ WORK( IWRK ), LWORK-IWRK+1, INFO )
- *
- IF( WANTVR ) THEN
- *
- * Want left and right eigenvectors
- * Copy Schur vectors to VR
- *
- SIDE = 'B'
- CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
- END IF
- *
- ELSE IF( WANTVR ) THEN
- *
- * Want right eigenvectors
- * Copy Householder vectors to VR
- *
- SIDE = 'R'
- CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
- *
- * Generate orthogonal matrix in VR
- * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- *
- CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- *
- * Perform QR iteration, accumulating Schur vectors in VR
- * (Workspace: need N+1, prefer N+HSWORK (see comments) )
- *
- IWRK = ITAU
- CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
- $ WORK( IWRK ), LWORK-IWRK+1, INFO )
- *
- ELSE
- *
- * Compute eigenvalues only
- * (Workspace: need N+1, prefer N+HSWORK (see comments) )
- *
- IWRK = ITAU
- CALL DHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
- $ WORK( IWRK ), LWORK-IWRK+1, INFO )
- END IF
- *
- * If INFO > 0 from DHSEQR, then quit
- *
- IF( INFO.GT.0 )
- $ GO TO 50
- *
- IF( WANTVL .OR. WANTVR ) THEN
- *
- * Compute left and/or right eigenvectors
- * (Workspace: need 4*N)
- *
- CALL DTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
- $ N, NOUT, WORK( IWRK ), IERR )
- END IF
- *
- IF( WANTVL ) THEN
- *
- * Undo balancing of left eigenvectors
- * (Workspace: need N)
- *
- CALL DGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
- $ IERR )
- *
- * Normalize left eigenvectors and make largest component real
- *
- DO 20 I = 1, N
- IF( WI( I ).EQ.ZERO ) THEN
- SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
- CALL DSCAL( N, SCL, VL( 1, I ), 1 )
- ELSE IF( WI( I ).GT.ZERO ) THEN
- SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
- $ DNRM2( N, VL( 1, I+1 ), 1 ) )
- CALL DSCAL( N, SCL, VL( 1, I ), 1 )
- CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
- DO 10 K = 1, N
- WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
- 10 CONTINUE
- K = IDAMAX( N, WORK( IWRK ), 1 )
- CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
- CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
- VL( K, I+1 ) = ZERO
- END IF
- 20 CONTINUE
- END IF
- *
- IF( WANTVR ) THEN
- *
- * Undo balancing of right eigenvectors
- * (Workspace: need N)
- *
- CALL DGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
- $ IERR )
- *
- * Normalize right eigenvectors and make largest component real
- *
- DO 40 I = 1, N
- IF( WI( I ).EQ.ZERO ) THEN
- SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
- CALL DSCAL( N, SCL, VR( 1, I ), 1 )
- ELSE IF( WI( I ).GT.ZERO ) THEN
- SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
- $ DNRM2( N, VR( 1, I+1 ), 1 ) )
- CALL DSCAL( N, SCL, VR( 1, I ), 1 )
- CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
- DO 30 K = 1, N
- WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
- 30 CONTINUE
- K = IDAMAX( N, WORK( IWRK ), 1 )
- CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
- CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
- VR( K, I+1 ) = ZERO
- END IF
- 40 CONTINUE
- END IF
- *
- * Undo scaling if necessary
- *
- 50 CONTINUE
- IF( SCALEA ) THEN
- CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
- $ MAX( N-INFO, 1 ), IERR )
- CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
- $ MAX( N-INFO, 1 ), IERR )
- IF( INFO.GT.0 ) THEN
- CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
- $ IERR )
- CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
- $ IERR )
- END IF
- END IF
- *
- WORK( 1 ) = MAXWRK
- RETURN
- *
- * End of DGEEV
- *
- END
-